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Abstract

Natural language processing (NLP) models have
been increasingly used in sensitive application do-
mains including credit scoring, insurance, and loan
assessment. Hence, it is critical to know that the
decisions made by NLP models are free of unfair
bias toward certain subpopulation groups. In this
paper, we propose a novel framework employing
metamorphic testing, a well-established software
testing scheme, to test NLP models and find dis-
criminatory inputs that provoke fairness violations.
Furthermore, inspired by recent breakthroughs in
the certified robustness of machine learning, we
formulate NLP model fairness in a practical set-
ting as (ǫ, k)-fairness and accordingly smooth the
model predictions to mitigate fairness violations.
We demonstrate our technique using popular (com-
mercial) NLP models, and successfully flag thou-
sands of discriminatory inputs that can cause fair-
ness violations. We further enhance the evaluated
models by adding certified fairness guarantee at a
modest cost.

1 Introduction

Recent natural language processing (NLP) achievements
have been depending on the progressive development of AI
techniques. To date, machine learning (ML) models have be-
come the cornerstone for most real-world NLP applications,
such as text classification, information extraction, and ques-
tion answering (QA). In particular, NLP systems have been
commercialized for various real-life purposes (crime predic-
tion, credit scoring, etc.), imposing a strong demand for the
precision and reliability of the underlying models.

Despite this spectacular progress, however, recent studies
have demonstrated that AI models are likely to encounter
severe legal or ethical issues, when the decisions are un-
fairly made by being biased against certain subpopulations
within sensitive attributes (e.g., those of a particular race, gen-
der, nationality, or sexual orientation) [Kusner et al., 2017;
Bolukbasi et al., 2016; Sheng et al., 2019]. Indeed, recent
studies have pointed out that black people are more likely
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to be classified as having negative emotions when complet-
ing emotion classification tasks [Rhue, 2018]. For sentiment
analysis (SA) tasks, predictions could be changed by tokens
related to identity groups as well [Garg et al., 2019]. To
date, the fairness of ML models has been violated in many
unwanted and potentially harsh ways, raising deep concern
regarding their rapid adoption in areas such as crime predic-
tion, credit scoring, and hiring [Barocas et al., 2019].

... there are a lot of actors trying too hard to 
be funny ...

... there are a lot of actresses trying too hard 
to be funny ...

... there are a lot of Chinese actor trying too 
hard to be funny ...

Original 
Review

Biased 
Review

Figure 1: Fairness violations in sentiment prediction.

We present a motivating example by training a CNN model
for SA with the Large Movie Review Dataset.1 Here, we
present three samples with the corresponding labels and
scores. It is easy to see that when sensitive attributes, includ-
ing gender and nationality, are changed or explicitly specified
in the samples, the results of the sentiment prediction would
change and lead to a potentially unintended bias.

Existing research has proposed various techniques to ex-
pose fairness violations in NLP models. However, these
works suffer from various drawbacks, such as relying on
heavy-weight (unscalable) statistical or symbolic analysis
tools, using pre-defined templates for input generation, or
processing only structured data tables [Galhotra et al., 2017;
Udeshi et al., 2018; Aggarwal et al., 2019]. Inspired by rel-
evant research in software engineering, we advocate for a fo-
cus on formulating the analysis of model fairness as a specific
software testing task where typical NLP models are treated
as a “black-box.” In particular, we propose employing a well-
established software testing scheme named metamorphic test-
ing (MT) to expose discriminatory inputs that lead to unfair
predictions of NLP models [Chen et al., 1998]. To test soft-
ware, MT works by 1) perturbing arbitrary inputs to generate
a set of mutations, and 2) checking whether a given metamor-
phic relation (MR) still holds w.r.t. the mutated inputs. Each
MR, usually an invariant, depicts necessary properties of the

1https://ai.stanford.edu/∼amaas/data/sentiment/
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target software.

While defining MR to assert model fairness is straightfor-
ward (see Section 2), generating perturbed natural language
inputs to test model discrimination is challenging. For in-
stance, existing works identify and replace certain tokens
with hand-coded mapping rules (e.g., “he” → “she”) [Kir-
itchenko and Mohammad, 2018]. However, hand-coded rules
are hard to fully explore subpopulations within arbitrary sen-
sitive attributes and thus prone to missing certain discrimi-
nations. Defining such mappings also requires considerable
manual effort. In this research, we leverage advanced NLP
methods to systematically and automatically gather subpop-
ulations within arbitrarily sensitive attributes and construct
mappings to perturb unstructured natural language sentences.
We further rule out “unrealistic” perturbations w.r.t. standard
language fluency metrics [Ge et al., 2018]. Hence, defects
exposed in this work are primarily due to fluent and common
sentences, presumably implying real-life issues.

We further propose techniques to enhance erroneous NLP
models by mitigating fairness violations. To date, there are
existing works on mitigating fairness failures in NLP mod-
els, e.g., with data augmentation and unbiased word embed-
ding [Zhao et al., 2018; Park et al., 2018; Sun et al., 2019].
Nonetheless, these works require to access and re-train erro-
neous models. In this research, we advocate for a new fo-
cus on mitigating fairness failures in the prediction phase,
and therefore, the proposed technique can be applied to even
black-box models. Inspired by recent breakthroughs in cer-
tified ML robustness [Lecuyer et al., 2019; Mu et al., 2019;
Cohen et al., 2019], we formalize fairness notation in terms
of (ǫ, k)-fairness (cf. Section 3.1), and we propose a neu-
tral phase that can piggyback on a (black-box) NLP model
to smooth its outputs: the smoothed outputs are certified to
preserve our (ǫ, k)-fairness.

Contribution. We propose MT-NLP, the first automated
framework to identify and mitigate unfair predictions of NLP
models. MT-NLP is designed as a pipeline to 1) employ ad-
vanced NLP techniques to systematically explore subpopula-
tions within sensitive attributes identified in arbitrary natural
language sentences, 2) perturb sentences regarding the iden-
tified sensitive attributes and perform MT on NLP models to
detect fairness violations, and 3) formalize model fairness in a
certified setting as (ǫ, k)-fairness and accordingly mitigate un-
fair predictions. As the proposed framework does not lever-
age any implementation detail of NLP models, it is robust to
any kinds of ML models (e.g., DNN or SVM) in a black-box
setting and therefore can directly analyze any (remote) mod-
els. Our extensive evaluation delineates the capabilities of de
facto commercial NLP services provided by industry giants
and also commonly-used local NLP models by exposing in
total 2,874 discriminatory inputs (among which 441 are from
commercial NLP services). We further enhance the evaluated
(commercial) NLP models w.r.t. the certified guarantees at a
modest cost.

2 Metamorphic Testing (MT)

Metamorphic testing (MT) has been widely used to automati-
cally detect software defects [Chen et al., 1998]. The strength

of MT is due to its capability to assert software correctness
via metamorphic relations (MRs). Each MR denotes nec-
essary, usually invariant, properties of the software. For in-
stance, to test the implementation of sin(x), instead of know-
ing the expected output of every input x, we can assert if a
MR sin(x) = sin(π−x) always holds when vastly mutating
x. A properly defined MR alleviates the need for testing ora-
cle (ground truth), thus making software testing significantly
more flexible. We now define NLP model fairness addressed
in this research and formulate the MT procedure accordingly.

Let M : X → R
n be a model which takes a natural lan-

guage sentence x as its input, model output is denoted as
argmaxM(x). Assume a perturbation function P perturbs x
into a set S such that for every x′ ∈ S, there exists a sensitive
attribute A and xp 6= x′

p′ where p, p′ ∈ A. In other words,
P perturbs x by inserting or changing one token in x from p
to p′, assuming p and p′ are both subpopulations within A.
x and x′ deem a pair of discriminatory inputs, in case their
model predictions are not identical. Hence, we check the fol-
lowing MR to identify fairness violations:

argmaxM(x) = argmaxM(x′)

and the corresponding MT workflow can be formulated as:

Algorithm 1: MT for Model Fairness Violation

Input: model M : X → R
n, input x, sensitive

attribute A, knowledge graph G := (V,E)
Output: discriminatory input set Sdis

1 Sdis ← ∅;
2 S ← P(x,A, G);
3 foreach x′ ∈ S do
4 if argmaxM(x) 6= argmaxM(x′) then
5 Sdis = Sdis ∪ {x′}
6 end

7 end
8 return Sdis;

Consistent with existing research [Galhotra et al., 2017;
Udeshi et al., 2018], sensitive attributes A (e.g., gender or
race) are chosen by users to enable a more adaptive design.
MT-NLP leverages a knowledge graph G during the pertur-
bation stage (introduced shortly in Section 2.1). We now elab-
orate on the design of perturbation function P .

2.1 Sentence Perturbator P

As mentioned above, enabling an automated workflow to
identify and mutate sensitive attributes in unstructured nat-
ural language sentences is challenging. Existing works lever-
age hand-coded mapping rules, and therefore, the capability
of finding defects is limited by the currently known mappings.
In contrast, we strive to systematically explore and mutate the
sensitive attributes without using any predefined mappings.

Given a sentence written in natural language, our observa-
tion reveals two primary mutation opportunities: 1) nouns de-
noting subpopulations within sensitive attributes, and 2) ad-
jectives assigning sensitive attributes toward a (neutral) noun.
Inspired by this observation, P conceptually captures both
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noun and adjective tokens for perturbation. The high-level
workflow is presented as follows:

Algorithm 2: Sentence Perturbator P

Input: input x, sensitive attribute A, knowledge graph
G := (V,E)

Output: perturbation set Sc

1 SC ← ∅;
2 T ←PartOfSpeech(x);
3 foreach t ∈ T and t is noun do
4 if IsPerson(t, G) then
5 SC ← SC∪AnalogyMutate(x, t,A, G);
6 SC ← SC∪ActiveMutate(x, t,A, G);

7 end

8 end
9 SC ←FluencyFilter(SC);

10 return Sc;

The proposed perturbation procedure takes a natural lan-
guage sentence x, a user chosen sensitive attribute A
(e.g., race), and also a knowledge graph G as the in-
puts. Knowledge graph connects words with labeled edges,
enabling a systematic understanding of natural language.
Here, we utilize a popular knowledge graph, Concept-
Net [Speer et al., 2017], that is particularly designed for
NLP tasks. Each node on ConceptNet represents a word
or phrase of natural language, and labeled edges on Con-
ceptNet, such as IsA, UsedFor, and CapableOf, de-
note relations between connected nodes. To implement
IsPerson, AnalogyMutate, and ActiveMutate (in-
troduced soon), we extensively use edge IsA on Concept-
Net, which throughly explores “attributes” of a given node.
For instance, by querying the IsA edges of “gay”, we know
that “gay” is a type of “lgbt”, a sensitive attribute which can
likely provoke fairness violations. Note that IsA represents
asymmetric relation. For the rest of the paper, we use IsA to
denote the forward query while IsArev is vice versa.

Perturbator P starts by performing standard part-of-speech
(POS) analysis to assign a POS tag (e.g., noun, verb, and ad-
jective) to each word [Manning et al., 2014]. Noun tokens
will be kept for use (line 3). We then check whether a noun
token refers to a person (line 4; IsPerson will be explained
soon). Given the sentence and the pinpointed tokens, we then
propose two strategies to generate testing inputs by chang-
ing either the noun tokens with AnalogyMutate (line 5)
or their associated adjective tokens with ActiveMutate

(line 6). In addition, while the “naturalness” of the synthe-
sized sentences does not have a direct influence on testing,
we augment the realism of the test inputs by preserving syn-
thesized sentences that are “fluent” (line 9). Hence, synthetic
sentences triggering fairness violations could presumably im-
ply real-life harshness. We implement a standard sentence
fluency metrics proposed in [Ge et al., 2018].

We now elaborate on the motivation and design of
IsPerson. Given the highly flexible meanings of natural
language tokens, our observation shows that perturbing ar-
bitrary nouns does not always generate useful sentences for

testing fairness violations. For instance, it could likely be-
come confusing to change “pen” into “pencil.” Hence, the
application scope of our analysis is fine-tuned to focus on the
most common setting — human related factors. Intuitively,
“model fairness” is highly correlated to attributes of people.
In fact, this design choice is consistently taken by the major-
ity, if not all, of previous research in this field [Galhotra et al.,
2017; Udeshi et al., 2018; Aggarwal et al., 2019].

Let node denoting “human” on ConceptNet be h, to decide
whether t represents a human being, IsPerson is imple-
mented to check the reachability between h and t via IsA
edges. For instance, “terrorist” and “policewoman” both
deem human-related nouns, since “terrorist” node directly
connects to h, and “policewoman” can also reach to h via two
hops on the graph. Also, for each IsA, ConceptNet assigns
a “weight” to denote the confidence score of such knowledge
relationship. When querying the reachability, IsPerson is
empirically designed to use edges with weight larger than 1.0.
Besides h, some other nouns can assuredly represent human
as well. Hence, we summarize a set, Ih (see Appendix A),
to subsume human-related nouns. t deems a human-related
noun, only if at least one h′ ∈ Ih is k-hop reachable by t
(k is configured as two for the implementation). To speedup
the search, we also empirically summarized some non-human
tokens as the early stop criteria of IsPerson.

Analogy Mutation

Limiting the perturbation target to only human-related tokens
progressively improves the quality of the perturbed sentences.
Nevertheless, it is still challenging to present a flexible de-
sign for mutating noun tokens. In general, while there are
character-level mappings that can be used to mutate certain
words, for instance, changing “er” to “ress” in nouns such as
“waiter”, these rules suffer from limited generality and may
fail to find similar tokens in many corner cases (e.g., “actor”
→ “actress” where “actor” does not end with “er”).

At this step, we propose a flexible and effective analogy
mutation method, AnalogyMutate, that is inspired by the
well-known “word analogy” techniques in manipulating word
embedding vectors [Ethayarajh et al., 2019]. Intuitively, if the
relations between two pairs of words are similar, the distances
between the two pairs of word-embedding vectors are similar.
Hence, given d which is a noun token and p, p′ which are
subpopulations within a sensitive attribute, we obtain d′, an
analogy of d, with the following equation:

W (d′) = W (d) +W (p′)−W (p)

where W (·) denotes the embedding vector of a given word.

x

y

z
female

male

actress

actor

Figure 2: The parallelogram structure of analogous words.
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Algorithm 3: Analogy Mutation

Input: input x, token t, sensitive attribute A;
knowledge graph G := (V,E), word
embedding table W : t 7→ v

Output: Analogy Mutation Set S
1 S ← ∅;
2 Sp ←G.IsArev(A);
3 pt ← argminpi∈Sp

‖W (pi)−W (t)‖2;

4 Sp ← Sp \ {pt} // set minus;
5 foreach pi ∈ Sp do

6 tM ← W−1(W (pi) +W (t)−W (pt));
7 x′ ←x.replace(t, tM);
8 S ← S ∪ {x′};

9 end
10 return S;

Inspired by word analogy techniques, the above equation pro-
vides an effective way of mutating d according to certain sen-
sitive attributes. For instance, assume p and p′ are subpop-
ulations within the “gender” attribute (e.g., p as “male” and
p′ as “female”), Fig. 2 provides a sample mapping by mu-
tating “actor” to its analogy noun “actress” which can poten-
tially trigger discrimination on “gender.” Similarly, given p
as “Christianity” and p′ as “Islamism”, the given translation
can map “Church” into “Mosque.”

The AnalogyMutate is defined in Algorithm 3. Given a
sensitive attribute chosen by users, we first query the knowl-
edge graph and backwardly fetch its type nodes (line 2). For
instance, suppose “gender” is the chosen sensitive attribute
A, knowledge graph G can help to collect nodes who are
“types” of gender, including both “male” and “female.” We
then iterate each element in Sp and identify pt whose word
embedding has the shortest distance with t; we exclude this
word (line 4), since that presumably indicates a subpopula-
tion (e.g., “male”) within A that is highly related to t (e.g.,
“actor”). line 5–9 concretize the analogy mutation introduced
above with the inverse function of W (·) and iterates remain-
ing tokens pi (e.g., “female”) within Sp.

Active Mutation

Algorithm 4 presents ActiveMutate used in Algorithm 2.
To avoid potential conflict, we rule out t if it already has ad-
jectives ahead. This can be easily done with part-of-speech
analysis and is omitted in Algorithm 4. In addition, to prevent
awkward perturbations such as “female actor”, we check if t
is “neutral” w.r.t. attribute A. To this end, we extract sub-
populations within a given sensitive attribute A by querying
the knowledge graph (line 2). Then, we iterate each element
pi ∈ Sp and leverage function HasIsAEdge to check if pi
is reachable by t on the graph (line 4); t is “neutral” w.r.t. pi
if no edge is found in between. If t is neutral, we re-iterate
Sp (line 8) and insert a sensitive adjective ahead (line 9).

3 Certified Mitigation

Recent advances in certified robustness provide a rigorous
framework for provable defense against adversarial exam-
ples. However, it is generally non-trivial to extend existing

Algorithm 4: Active Mutation

Input: input x, token t, sensitive attribute A;
knowledge graph G := (V,E)

Output: Active Mutation Set S
1 S ← ∅;
2 Sp ←G.IsArev(A);
3 foreach pi ∈ Sp do
4 if G.hasIsAEdge(t, pi) then
5 return ∅;
6 end

7 end
8 foreach pi ∈ Sp do
9 tM ← pi + t // modify t with adj. pi;

10 x′ ←x.replace(t, tM);
11 S ← S ∪ {x′};

12 end
13 return S;

methods to NLP tasks with discrete domain since the magni-
tude of adversarial sentences are not measurable in practice.
Nevertheless, given an arbitrary sentence x, since we have
constituted its perturbation set S, set S indeed enables the
certified mitigation (introduced soon). Also, while related
works propose to employ statistical methods like Interval
Bound Propagation to achieve verified NLP model robustness
against adversarial word substitutions [Huang et al., 2019;
Jia et al., 2019], we note that these works cannot directly en-
hance black-box NLP models.

3.1 (ǫ, k)-Fairness

In this section, we formulate fairness for individual samples
derived from the expected output stability bound [Lecuyer et
al., 2019].

Definition 3.1 A function f : X → [0, b)N and a sam-
ple x0 are (ǫ, k)-fairness w.r.t. sensitive attribute A, if ∃S ⊆
XA, |S| = k, ∀x, x′ ∈ {x0} ∪ S subject to

f(x) � eǫf(x′) (1)

where XA denotes the set of all possible mutations of x0 on
A, |S| denotes the cardinality of S and ǫ ≥ 0.

Intuitively, the definition requires that the outputs of at least
k biased mutations are bounded by the fairness parameter ǫ.
Naturally, higher k indicates a higher confidence toward the
stated fairness parameter. In a special case where ǫ = 0, the
outputs of all the k mutations are equal.

3.2 Neutral Layer Design

Enabled by the (ǫ, k)-fairness formulation, this section pro-
poses the design of a neutral layer that can piggyback the
(black-box) NLP models and mitigate its fairness violation.
To this end, we reuse the set of perturbed sentence S gener-
ated in the testing phase.

Inspired by the binary version of random response [Warner,
1965] and how it is generalized into a multivalue version by
the staircase mechanism [Kairouz et al., 2016], we design a
certified mitigation mechanism to achieve (ǫ, k)-fairness as
follows:
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Figure 3: Workflow of the certified mitigation mechanism.

Theorem 1. Given a model M, an input x and its corre-
sponding set of perturbations S, the certified model f is un-
der (ǫ, k)-fairness guarantee if

f(x) =
eǫ

k + eǫ
M(x) +

∑

x′∈S

1

k + eǫ
M(x′) (2)

The certified mechanism allocates weights to each element
in {x} ∪ S and yields a smoothed output ŷ. Overall, this
method imposes no need to change the model training pro-
cess, but enabling provable mitigations at inference time.
Hence, it is generic and applicable toward arbitrary (black-
box) models. Fig. 3 illustrates the mitigation process over
input sample x0 by using its corresponding perturbed sen-
tences. We further give proof of Theorem. 1 on its fairness
guarantee in Appendix B.

As depicted in Fig. 3, the proposed mitigation leads to ad-
ditional computing overhead. Overall, for each input x, we
compute its perturbation set S, incurring k additional pre-
dictions (recall |S| = k). Nevertheless, since the prediction
phase of each sample is independent, it is feasible to paral-
lelize the k + 1 prediction phases and reduce the processing
time.

4 Evaluation

While the proposed technique is capable of testing any NLP
task, in the evaluation, we decide to focus on one widely-
used NLP task, sentiment analysis (SA). SA has been well
commercialized for daily usage and constantly reported to
be affected by discriminatory inputs [Dixon et al., 2018;
Kiritchenko and Mohammad, 2018].

MT-NLP allows users to chose any reasonable sensitive
attributes A as inputs. In the evaluation, we take “gender”,
one frequently concerned factor in fairness, as the sensitive
attributes of A. We leave it as one future work to equip MT-
NLP with other sensitive attributes, for instance “religion.”

4.1 Perturbation

From 20,000 sample sentences in the Large Movie Review
test dataset, our perturbator P finds 17,165 “mutable” sen-
tences; mutable sentences contain at least one human-related
noun token (see IsPerson). P then generates in total
174,183 perturbed sentences as the test inputs, among which
30,859 are produced by analogy mutations and 143,324 are
from active mutations. Hence, for one mutable sentence x,
the average size of its perturbation set S is 10.2, indicating
that the proposed technique reveals considerable amount of
test inputs for arbitrary natural language sentence.
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Figure 4: Perturbation distribution.

NLP Models and Services
# of Tested # of Fairness

Sentences Violations

Amazon Comprehend API 28,425 197

Google NLP API 30,504 140

Microsoft NLP API 28,721 104

CNN 174,183 1,111

Logic Regression (LR) 174,183 1,322

Table 1: Result overview.

Fig. 4 studies the perturbation results by reporting the dis-
tribution of number of perturbations derived from an input
sentence x. We report that about 67.0% inputs have more
than 5 perturbations, and 37.2% inputs have over 10 per-
turbations. The largest perburbation set for an input is 116.
Overall, the promising results demonstrate that the proposed
technique can automatically synthesize large amount of per-
turbations from arbitrary sentences, thereby enabling the sys-
tematic testing of NLP models. Furthermore, recall that given
the definition of (ǫ, k)-fairness, k, denoting |S|, quantifies the
confidence toward the stated fairness over input x. In other
words, the perturbed sentences enable high confidence of cer-
tified mitigation, as will be discussed shortly in Section 4.3.

When perturbing sentences, the leveraged knowledge
graph, ConceptNet, is hosted remotely. Hence, the per-
turbation time largely depends on the local network band-
width. Nevertheless, we still report that our perturbation takes
roughly 28 hours (on average 715 samples per hour). We in-
terpret the overall processing time as practical and promising.

4.2 Testing Fairness Violations

Table 1 reports the evaluation results. We use three commer-
cial SA services provided by Google, Microsoft, and Amazon
for the evaluation. To our knowledge, the NLP models em-
ployed in these commercial services are not disclosed. We
wrote Python scripts to query with these remote services and
parse their outputs (in JSON format). In addition, we lo-
cally trained two SA models with the Large Movie Review
training dataset [Maas et al., 2011]. The CNN model, im-
plemented in Keras (ver. 2.2.4), has one convolutional layer
followed by two fully-connected layers. We use the stan-
dard pre-processing module of the IMDB data for embedding.
As for the LR model, we use the default setting provided in
Scikit-Learn (ver. 0.22.1) and BoW embedding.

While considerable amount of perturbed sentences are gen-
erated, all three commercial NLP services have limits of max-
imal input length that can be accepted. That is, not every sen-
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NLP Models and Services Original Sentence Perturbed Sentence Prediction Change

Amazon Comprehend API
. . . train to make their way to L.A. . . . train to make their way to L.A.

negative → positive
to see his uncle to lift the curse . . . to see his aunt to lift the curse . . .

Microsoft NLP API . . . favorites are the O’Reily brothers . . . . . . favorites are the O’Reily sisters . . . positive → negative

CNN . . . a gold train filled with Union soldiers . . . . . . a gold train filled with Union male soldiers . . . positive → negative

Table 2: Fairness violations detected by MT-NLP from commercial and local models.
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Figure 5: Fairness violation percentage w.r.t. different ǫ.

tence can be smoothly analyzed. The second column of Ta-
ble 1 reports the number of successfully processed sentences,
and the third column reports the number of triggered fairness
violations. In general, we report that considerable number
of fairness violations can be found from all the models. We
interpret this as promising and intuitive; MT procedure im-
plemented in MT-NLP is agnostic toward the specific model
implementation, and it performs consistently across all these
SA tools, despite the differences in the underlying models.

More discriminatory inputs can be found from local mod-
els compared with remote commercial services. While the
implementation details of these commercial tools are not dis-
closed, our observation reveals an interesting finding: com-
mercial NLP services seem to perform pre-process and trim
off certain sensitive adjective tokens (e.g., “girly”) which
could likely lead to unwanted and harsh discriminations. As a
result, most of the discriminatory inputs found from commer-
cial APIs are generated by analogy mutation which directly
perturbs noun tokens. In contrast, large amount of discrimi-
natory inputs generated by both mutation strategies are found
when testing the local models.

Table 2 presents three typical discriminatory inputs found
by MT-NLP. The first example is found when testing the
Amazon service. MT-NLP identified the gender-related
noun uncle and successfully inferred the corresponding al-
ternative token, aunt, with analogy mutation. Similarly, the
second case changes brother into sister with analogy mu-
tation. The last sample presents a sentence perturbed with
active mutation on the local CNN model: a gender-related
adjective, male, was inserted into the original sentence and
provoked a fairness violation.

4.3 Certified Mitigation

By piggybacking the neutral layer toward a NLP model, we
enforce the (ǫ, k)-fairness guarantee. In this section, we eval-
uate the effectiveness in terms of different settings. In gen-
eral, ǫ quantifies the strength of the fairness guarantee, and for
sufficiently small ǫ, perturbing sensitive attributes should not

change the model output. Fig. 5 reports the evaluation results
over different NLP models and services (“LR Base” is a base-
line derived from adversarial training; will explain shortly).
The percentage is calculated, by dividing the number of vi-
olations after mitigation with the total number of violations
found before mitigation (i.e., the third column of Table 1).

Fig. 5 reports promising results for all the NLP models,
despite that they presumably share different model structures
and settings. We report that when ǫ is 0.1, on average more
than 98.0% violation cases can be mitigated. Nevertheless,
when ǫ is increased to 10, only certain amount of violations
in Microsoft API (10.6%) and Google API (99.3%) can be
mitigated. None violations are mitigated in others (therefore
their corresponding percentages are “100%” in Fig. 5).

The sentiment analysis results of Google API can be de-
cided according to the sign of its return value (a float number
f ). f manifests a negative sentiment, if it was less than zero,
and vice versa. Also, the sentiment is “neutral”, if f is zero.
In other words, a small perturbation on f , e.g., 0 → 0.001,
is sufficient to change its label from “neutral” to “positive”.
We inspect the fairness violations of Google API, and find
most violations are misclassified to “neutral” from “positive”
or “negative.” Hence, even ǫ reaches 10 where the impact
of other mutations is negligible, the mitigation can fix most
erroneous predictions, by still slightly drifting f from zero.

We also design a comparison group (the “LR Base” line)
where a LR model is adversarially trained using the original
dataset and corresponding mutations generated by our pertur-
bator P . We report that with adversarial training, LR model
becomes resilient toward 76.6% discriminatory inputs (only
23.4% violations, as shown in Fig. 5). In comparison, the
“LR” data in Fig. 5, when ǫ is less than 1.8, achieves a better
mitigation rate. This comparison demonstrates that our miti-
gation technique, with sufficiently small ǫ, can achieve even
higher security guarantee compared with white-box adversar-
ial training.

As for the cost, since our mitigation extends each predic-
tion x into k + 1 predictions on {x} ∪ S, the CPU time of
each prediction becomes linear to k. As aforementioned, k
is on average 10.2, which can be well parallelized on mod-
ern multi-core CPUs. Hence, we envision the elapsed real
time should not vary largely in real-world usages. Overall,
we interpret the evaluation results as promising: small ǫ lead
to practical mitigation of fairness violations at a modest cost.

5 Related Work

Software testing techniques has been applied for testing
AI applications driven by machine learning or deep learn-
ing models. To this end, well-established testing tech-
niques, including metamorphic testing [Wang et al., 2019;
Dwarakanath et al., 2018; Zhang et al., 2018], differen-
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tial testing [Pei et al., 2017; Tian et al., 2018], and fuzz
testing [Xie et al., 2018], have been successfully leveraged
in detecting errors of CV applications [Tian et al., 2018;
Pei et al., 2017; Zhang et al., 2018] and NLP applica-
tions including machine translation [Sun and Zhou, 2018;
He et al., 2020; Yan et al., 2019] and chatbots [Bozic and
Wotawa, 2019].

AI model fairness has been particularly formulated as a
software property and analyzed by software engineering tech-
niques. To date, mutation testing techniques are proposed to
detect discrimination in NLP models [Galhotra et al., 2017;
Udeshi et al., 2018]. [Aggarwal et al., 2019] introduces
symbolic execution and local explainability to generate in-
puts in black-box scenarios. Nevertheless, existing research
essentially uses pre-defined mapping rules (e.g., “male” →
“female”) to perturb structured data tables (e.g., the Kag-
gle Bank Marketing Dataset [Martinez, 2018]). In contrast,
this work aims to perturb unstructured natural language sen-
tences, thus extensively extending the application scope.

6 Conclusion

We have presented MT-NLP, a throughout and automated
tool to pinpoint and mitigate fairness violations of NLP mod-
els. Our evaluation has found thousands of discriminatory
inputs from commercial and local NLP models, and accord-
ingly smooth model predictions with certified guarantees.

A Human-Related Noun Word Set Ih

We empirically define Ih as:

{“human”, “people”, “person”, “human adult”, “employee”}

B Proof of Theorem 1

In this section, we proof that the mechanism in Theorem 1 is
indeed under (ǫ, k)-fairness guarantee. Let M denote an arbi-
trary NLP model, where X is the input domain. We first prove
the case where M : X → [0, b), then generalize to multi-
dimensional cases. As introduced in Section 2, by mutating
an input x0, we create a set of semantics-preserving muta-
tions Sp = {x1, · · · , xk}. Then according to Theorem 1, we
have f

f(x0) =
eǫ

k + eǫ
M(x0) +

k∑

i=1

1

k + eǫ
M(xi) (3)

Derived from the definition, we can obtain a corollary.
Given x, x′, if M(x) ≤ M(x′), then f(x) ≤ f(x′) accord-
ingly.

For the ease of presentation, given a set of mutations
{x0, x1, · · · , xk}, let {y0, y1, · · · , yk} denote the output of
M and {ŷ0, ŷ1, · · · , ŷk} denote the output of f , respectively.
Also, without loss of generality, let i, j ∈ [k + 1], where
[k + 1] := {0, 1, · · · , k}.

Then,

ŷi

ŷj
=

(eǫ − 1)yi +
∑

yn

(eǫ − 1)yj +
∑

yn

=
(eǫ − 1)yi +

∑
yn − eǫ[(eǫ − 1)yj +

∑
yn]

(eǫ − 1)yj +
∑

yn
+ eǫ

=
(1− eǫ)(

∑
n6=i yn + eǫyi)

(eǫ − 1)yj +
∑

yn
+ eǫ ≤ eǫ

(4)

holds. Therefore, ∀x, x′ ∈ {x0} ∪ Sp,
f(x)
f(x′) ≤ f(xi)

f(xj)
≤ eǫ.

Then, applying the inequation to multi-dimensional models
iteratively, f(x) � eǫf(x′) holds.
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